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Abstract

This paper studies the impact of carbon prices on local air pollution, highlighting

two key mechanisms in which a carbon price changes the spatial distribution of air

pollution. I develop a model of firm production and e�ciency investment decisions

to capture these mechanisms and quantify their impacts. I show that the observed

carbon price in California led to minimal changes in the spatial distribution of local air

pollution emitted by the state’s electricity sector. A higher carbon price changes the

spatial distribution of local air pollution providing co-benefits from the climate policy,

which increase in pre-policy pollution burden.
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1 Introduction

When firms create local externalities, the welfare e↵ects of a policy regulating these externalities depend

on how the policy changes the geography of production. For instance, carbon prices regulate firms that

produce greenhouse gases, many of which also produce co-pollutants that contribute to local air pollution.

If firm’s responses to carbon prices change production geographies, some regions can experience increases

or decreases in local air pollution, even while aggregate greenhouse gas emissions and local air pollution

is reduced. Given the disproportionate shares of local air pollution borne by low-income and minority

communities (Banzhaf, Ma and Timmins 2019; Colmer et al. 2020), understanding the interaction of carbon

prices and local air pollution is critical to assessing the equity impacts of climate change policy (Hernandez-

Cortez and Meng 2019; Ed. 2019). In this paper, I study how California’s carbon price, implemented via an

emissions trading program for carbon emissions, impacts the spatial distribution of local air pollution from

firms in California’s wholesale electricity sector.

A regulation can change the spatial distribution of firms’ production by altering their costs heteroge-

neously, changing their relative competitiveness. Firms that are relatively more competitive following the

regulation would be expected to increase their market share compared to a no-regulation environment. Ac-

cordingly, other local externalities of production such as air pollution will also increase from these firms. If

firms that increase production in the regulated environment are located in regions that are already heavily

polluted, the policy would exacerbate pollution in these regions. On the other hand, if these firms are lo-

cated in relatively less polluted regions, the regulation could ameliorate disproportionate pollution burdens.

Thus, the equity outcomes depend on the spatial distribution of the plants and their cost structures, which

determine their responses to the policy.

Emissions trading programs, also known as cap-and-trade programs, internalize the global warming

externalities of greenhouse gas emissions by requiring that firms pay for their emissions. The price for

emissions, the carbon price,1 is determined in equilibrium based on the behavior of all regulated firms and

the total number of tradeable permits created by the regulator. With competitive permit markets, the

regulation augments the firm’s profit maximization problem by adding a cost, the carbon price, to each unit

of emissions. For the firms that I study, carbon pricing impacts the near- and medium- term air pollution

distributions through two key mechanisms. First, the carbon price could change the order of units along

aggregate supply curves in hourly markets for wholesale electricity by heterogeneously changing firms’ costs.2

1Carbon prices are generally defined as a $ per ton of carbon dioxide emissions equivalent. This allows
for a single carbon price for any greenhouse gas covered by the regulation, where each greenhouse gas creates
a compliance obligation based on its carbon dioxide equivalent.

2The order of units on an aggregate supply curve is called the merit order in electricity markets.
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In this case, the share of electricity provided by each unit for a given level of demand would change following

the carbon price, as well as the local pollution generated by that firm.3 Second, the carbon price could lead

to changes in firms’ emissions intensities of both greenhouse gases and local air pollutants from investments

in e�ciency. The carbon price enters firms’ profit maximization decisions analogously to an increase in the

cost of inputs, and thus, investments in e�ciency should weakly increase following the introduction of the

carbon price. E�ciency improvements lead to burning less fuel per unit of output thereby reducing emissions

intensities.4 In summary, in the near- and medium-terms the spatial distribution of local pollution under a

carbon price can change from supply curve re-orderings and/or from changes in unit e�ciencies.

To capture these mechanisms, I develop a model of electricity generating unit’s dynamic production

decisions, as well as e�ciency investment decisions, and use the estimates from the model to simulate market

outcomes across alternative policy scenarios. Firm’s make hourly productions, which are dynamic because

of the presence of start-up costs incurred to turn units on when not previously operating. Firms also make

a one time decision of whether to invest to improve their e�ciency or not. The model is designed to capture

near- and medium- term outcomes and does not consider firm entry or exit; the investment decision here is

whether to improve firm e�ciency conditional on having built an electric generating unit.5 To estimate the

model, I leverage the correspondence between the competitive equilibrium and a cost minimization problem

as demonstrated in Cullen and Reynolds (2017).

After estimating the model, I first compare California’s carbon price to a no-carbon price world. Next,

as many environmental advocates have been concerned about the low carbon prices observed in the state,

I simulate outcomes under higher carbon prices that would arise from a more stringent emissions trading

program. Finally, I consider that the carbon price is implemented together with a location-specific Pigouvian

tax on local air pollution. The results of the model indicate that the cost structure of California’s fossil-fuel

electricity portfolio leads to minimal reallocation of production and emissions at current carbon prices. Thus,

at current carbon prices, the policy has a limited e↵ect on the spatial distribution of air pollution emitted by

the electricity sector. While this result quells concerns about the negative unintended consequences of the

carbon price’s impact on the distribution of local air pollutants, the analysis also reveals that the current

carbon price does not meaningfully reduce local air pollution from the state’s disproportionately polluted

3The term market share here refers to the share of residual demand in a given hourly market to be
provided by units regulated by the carbon price. Residual demand denotes hourly demand less generation
from renewable energy resources and any other preferred generating resources, given priority for cost or
regulatory reasons.

4Emissions intensities are the amount of emissions released per unit of electricity.
5That said, the repeated production decisions in this model can be likened to a repeated entry and exit

model: in each period, firms decide whether to “enter” an hourly production market, or not, with fixed costs
associated with entry.
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communities. In counterfactual simulations of higher carbon prices, I find larger changes in the spatial

distribution of production as a result of the carbon price. These production changes lead to aggregate co-

benefits from the climate change policy’s impact on local air pollution compared to a no carbon price policy.

Further, I find that on average these benefits are larger among counties with higher pre-existing pollution. I

compare this to a scenario with a carbon policy at current prices combined with a location-specific Pigouvian

tax on local air pollution, which also provide benefits from avoided local air pollution damages in a magnitude

similar to the high carbon price scenarios.

A key contribution of this model is its incorporation of dynamics in the production decision. Firms

in this setting, electricity generating units, incur start-up costs to turn on when previously not producing.

These start-up costs render the production decision dynamic, as they require that firms make expectations

over future prices to avoid repeatedly turning on and o↵. Modeling production as a static decision shuts

down a key mechanism in which the carbon price could alter the spatial distribution of production. As

discussed further in Section 2.5, with static decision-making, the impact of the carbon price can be modeled

as an upward shift in the supply curve, together with an increase in the slope of supply curve. In this

static analysis, the carbon price preserves the ordering of electricity generating units along the supply curve,

and does not lead to re-allocation of production or local externalities across firms. This point is instructive

for predicting anticipated production re-allocation and leakage in other sectors: when production decisions

are made largely based on marginal costs from inputs, and a regulation increases the costs of inputs, little

production re-allocation should be expected. The presence of costs that are less a↵ected by the regulation

creates the opportunity for production re-allocation by re-ordering firms on aggregate supply curves.

This paper contributes to an emerging literature empirically studying the e↵ect of climate change policy

on the distribution of air pollution. I build on other work studying the equity impacts of market-based

environmental regulation (Fowlie, Holland and Mansur 2012; Hernandez-Cortez and Meng 2019; Grainger

and Ruangmas 2018; Walch 2018; Shapiro and Walker 2021) by explicitly modeling the mechanisms in

which the regulation could alter these outcomes.6 While pricing carbon is often the preferred approach to

addressing global climate change from an economic e�ciency perspective, its impact on the distribution of

co-pollutants that create local air pollution is not well understood. Critics of carbon pricing contend that the

policy’s local impacts lead to worse air quality outcomes for regions that are already heavily polluted. Some

research supports this, for example, Cushing et al. (2018) find descriptive evidence that pollution increased

in disproportionately polluted communities following the cap-and-trade program. On the other hand, Walch

6Fowlie, Holland and Mansur (2012); Grainger and Ruangmas (2018) study the equity impacts of market-
based policy regulating local air pollution. This paper and Hernandez-Cortez and Meng (2019); Walch (2018)
study the cross-e↵ect of market-based mechanisms designed to address climate change on local air pollution.
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(2018) and Hernandez-Cortez and Meng (2019) find the opposite e↵ect, with the later finding evidence

of a reversal of some spatial pollution trends leading to a reduction in pollution among heavily polluted

communities. These two papers use reduced form approaches that focus on the policy’s e↵ect across all

regulated industries. In this paper I develop a model that allows me to elucidate the mechanisms in which

the policy could impact equity outcomes from air pollution, as well as to simulate counterfactual equity

outcomes under alternative policy scenarios. The model builds on other dynamic competitive equilibrium

frameworks such as Jovanovic (1982) and Hopenhayn (1992) and is most similar to Cullen and Reynolds

(2017).

Finally, by focusing on the regulation’s e↵ect on one regulated industry, the electricity sector, this paper

is able to move beyond current literature that asks whether market-based regulation led to more local air

pollution in disproportionately polluted communities (Walch 2018; Hernandez-Cortez and Meng 2019; Fowlie,

Holland and Mansur 2012; Grainger and Ruangmas 2018), to ask why the regulation would or would not be

expected to have such an e↵ect. This research provides insights in other settings with similar cost structures.

In particular, I show that regulations that increase marginal costs would be expected to have little production

re-allocation e↵ects among industries where production decisions are dominated by marginal costs, due to the

preservation of the ordering along the supply curve. Further, I make a theoretical point that when e�ciency

is decreasing in pollution intensity, under certain conditions on investment costs, investments in e�ciency

improvements are more likely among the relatively more-e�cient and more frequently utilized units, which

is further discussed in Weber (2021).

As the fifth largest economy in the world with an environmentally progressive government, California

has and continues to serve as an important testing ground for climate change policy. As an early adopter

of GHG emissions trading policy,7 the state was also early to take on the debate around the equity impacts

of market-based environmental regulation. The debate has since taken over national climate change policy

discussions, playing out in the Biden Administration’s selection of the head of the Environmental Protection

Agency (Davenport 2020). It is also seen in the current reluctance of policy makers to use market-based

mechanisms to meet environmental goals, with a recent preference for platforms that focus on standards and

investments (Bushnell 2021). The move away from market-based mechanisms to mitigate greenhouse gases

due to the concern that they lead to outcomes that conflict with equity goals is not yet firmly grounded

in empirical research. This paper seeks to weigh in on this debate, with the goal of understanding the

mechanisms in which market-based climate change policies could change the spatial distribution of local air

7Other countries and regions have also implemented cap-and-trade programs for greenhouse gases, no-
tably the European Union’s Emissions Trading Scheme (EU ETS) in 2005, the Regional Greenhouse Gas
Initiative in the eastern United States in 2005, and Australia’s cap-and-trade program in 2012.
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pollution. In doing so, this paper also contributes to literature regarding the distributional consequences

of energy, electricity, and climate change policy (Borenstein 2012, 2013, 2017; Borenstein and Davis 2016;

Fullerton, Heutel and Metcalf 2012; Goulder et al. 2018; Knittel and Sandler 2018).

The rest of the paper is organized as follows. Section 2 describes the model of production and e�ciency

investment decisions, and reviews the theoretical predictions of the model regarding the carbon price’s impact

on production and investment. Section 3 describes the empirical strategy. Section 4 reviews data sources

and the empirical setting. Section 5 presents the results, and Section 6 concludes.

2 Dynamic Model of Investment and Production

In this model decisions are made at the electricity-generating unit level, where a unit consists of a

heat engine that converts fuel to energy. Units are assumed to act competitively and make decisions as

single agents. Accordingly, I treat each unit as acting as an individual firm and refer to units as firms.8

Firms make two decisions. First, firms make one-time decisions of whether or not to invest to improve their

e�ciency. A firm’s e�ciency is measured by its heat rate, which is the amount of fuel needed to produce one

unit of electricity through combustion. Consequently, lower heat rates translate to improved e�ciency and

lower input costs. This investment decision determines the firm’s e�ciency in subsequent, repeated hourly

operation decisions. I model the investment decision as myopic to market outcomes beyond the the first

compliance phase of the carbon policy.9

In the production decision, firms make repeated binary operation decisions, deciding whether or not to

generate electricity in each hourly market. Operation is more costly if the firm was not operating in the prior

period, due to the presence of start-up costs, which are incurred from the additional costs of fuel, auxiliary

power, water, additives, chemicals, and wear and tear required to bring a unit online (Kumar et al. 2012).10

Firms make operation decisions based on their expectations of future demand. Hourly demand is assumed

to be inelastic to wholesale electricity prices, and demand shocks are modeled as an AR(1) Markov process,

conditional on hour of the day.11

8I discuss this assumption in section 4.1.
9The intuition behind this modeling approach is that at the end of the first compliance period, firm’s

acquire new information about the regulatory environment for the next period, and make new decisions
regarding investments.

10Estimates of start-up costs from the National Renewable Energy Laboratory (NREL) show that main-
tenance costs from the wear and tear of turning generating units on and o↵ composes the large majority of
start-up costs (Kumar et al. 2012).

11Residential customers pay retail rates, which allows me to treat hourly residential demand as inelastic
to the price firms are paid, the wholesale price for electricity. There are some caveats with this approach.
One, industrial customers may pay rates closer to wholesale prices. Two, some retail customers may have
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2.1 Investment Decision

For the investment decision, firms decide whether to invest to improve their e�ciency by reducing their

current heat rate !0, measured in Btu per KWh. Firms choose j from a discrete set of activities in set J of

size J , which includes j = 0 corresponding to no investment. Modeling the investment choices as discrete is

supported by the data, which exhibit lumpy investment behavior.12 Following the investment decision, firm

i’s heat rate !i is:

!i = !
0
i
(1 + �̃)� ji, (1)

where ji  !i and �̃ 2 (0, 1) is an exogenous depreciation rate that decreases firm e�ciency, i.e., increases

the firm’s heat rate, and corresponds to the time in between the investment decision and the first production

decision. Investments to improve e�ciency have costs that increase in the size of the e�ciency improvement

and are denoted �:

�(ji, vi, �) = �j
1/↵
i

+ vi, (2)

where ↵ governs the rate at which marginal investment costs are increasing in size of desired improvement,

and vi is a stochastic shock to investment costs, draw from a logit distribution.

2.2 Operating and Production Decision

Firms also make binary operating decisions ait 2 [0, 1], conditional on !i chosen in the investment

decision. The quantity firm i produces in each hour qit follows from its operating decision, based on the

following decision rule:

opted into demand-side management programs that provide incentives to change demand in response to
wholesale prices. There is a separate question about changes in demand over time, that is, the question of
whether we should expect shifts in the demand curve over time. We could imagine that a growing economy
leads to an increase in demand over time; alternatively, we could foresee that an increase in renewable energy
reduces the residual quantity demanded by this fossil portfolio. In this paper I do not take a stand on future
demand, and consider the response of the fossil portfolio for a given level of demand.

12See section A.5 for more information about empirically observed investment. For computational
tractability, the estimation collapses the investment decision to a binary choice to invest or not.
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qit =

8
>>>>>><

>>>>>>:

qi,max if Pt � mci and ait = 1

qi,min if Pt < mci and ait = 1

0 if ait = 0.

(3)

Pt denotes the wholesale equilibrium prices in hour t; mci denotes the marginal costs of production,

defined below; and qi,min and qi,max denote the firm’s minimum and maximum operation levels.13 Modeling

production as a discrete choice is supported by the data, which shows that generating units generally operate

at one of a discrete set of production quantities, as shown in Figure 16 in Appendix 8.7.14

The per period profits for firms are defined:

⇡it =

8
>><

>>:

qit(Pt �mci) if ai,t�1 = 1

qit(Pt �mci)� i if ai,t�1 = 0,

(4)

where i denotes start-up costs. Marginal costs are a function of firm e�ciency (heat rate), !i; costs of

fuel, f ; emissions intensity of the fuel, ef ; and price of GHG permits, ⌧ :15

mci = !i(f + e
f
⌧). (5)

The above formulation shows that when f and e
f are positive and ⌧ is non-negative, mci is increasing

in heat rate, @mci
@!i

> 0. Further, the formulation demonstrates that investments to reduce heat rate reduce

marginal costs by decreasing both fuel costs, !i · cf , and compliance costs, !i · ef⌧ . In this sense, the GHG

program can be seen as an increase in the cost of inputs to production, analogous to an increase in natural

gas prices, as discussed in Mansur (2008).16 In this model, both fuel costs and carbon prices are known

and exogenous, though future research could explore allowing these two input costs to di↵er in terms of

how firms make expectations over future natural gas versus carbon prices. For the purposes of defining the

state variables for the model, I define marginal input costs, c, as the sum of marginal fuel and GHG prices,

13The simulations set qmin = 0.75 · qmax, where qmax is the reported operation capacity of the firm in
MW. I compare this approach to estimating qi,min and qi,max from the data using finite mixture models,
and find similar estimates when averaging over the firm type categorizations that are used in the empirical
analysis.

14The number of discrete operating levels varies across generating units; limiting the number of operating
levels to two as is done here is a simplifying assumption.

15The formulation of (5) in units is $
KWh

= Btu

KWH
⇤ $

Btu
+ Btu

KWH
⇤ emissions

Btu
⇤ $

emissions
.

16Mansur (2008) leverages this similarity between incentives from natural gas costs and GHG prices to
evaluate carbon abatement costs in electricity markets using changes in natural gas prices.
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f + e
f
⌧ .

2.3 The Firm’s Problem

This section specifies the state variables and their transitions and formulates the firm’s dynamic pro-

gramming problem. In the production decision, firms observe state variables, s, for the current period

demand shock, hour, its lagged operating state, its heat rate, and the input costs, st = {⌘t, ht, at�1,!, c}.

Firms make expectations about future period demand shocks and choos at to maximize the sum of future

discounted profits. Firms are assumed to have rational beliefs about future demand, and demand is mod-

eled as an AR(1) process conditional on hour of the day, ht. Hourly demand is assumed to be inelastic to

wholesale prices. As such, characterizing firms’ expectations of demand shocks is su�cient to characterize

their beliefs about wholesale prices, Pt. The lagged operating state, at�1, equals 1 when the firm was on

in the last period and 0 otherwise. Input costs, c, are exogenous, time invariant, and known to firms, and

the hour of day evolves as ht+1 = ht + 1 � (ht = 24) · 24. Given a price process that is measurable with

respect to all possible histories of the demand shocks, the value for firms in time t with state st (index i is

suppressed):

V
2j(⌘t, ht, at�1,!i, c) = sup

at2{0,1}
{E

1X

t=0

�
t[qt(Pt(⌘t)�mc(!i))� (at�1 = 0, at = 1)]}, (6)

where at determines qt by the decision rule in equation 3. The second term on the right-hand side reflects

start-up costs incurred for every period t that firms operate when not operating in t � 1.17 A policy for

production decisions is profit maximizing for firms with initial state st if it satisfies 6.

Next, I formulate the value function for firms in the investment decision. Firms make investment decisions

by comparing the costs of investment to the payo↵s in production from the reduction in fuel and compliance

costs as a result of improved e�ciency less the costs of investment:

V
1(s) = max

j2J
{�̃ E[V 2j(s)]� �(j, v, �)}, (7)

where the initial demand shock is the same as the initial demand shock in the production decision. The

optimal policy for production and investment is characterized by the value functions in 6 and 7 above.

17Ramp-up and ramp-down costs, which are the costs of the firm to operate at sub-optimal heat rates
while ramping up to the preferred operating level, are not explicitly modeled. As a result, these costs are
bundled into the start-up costs, since every start-up also requires a ramp-up and ramp-down.

9



2.4 Cost Minimization Problem

To evaluate the solution to the firm’s two-part dynamic programming problem, I leverage the correspon-

dence between the profit-maximizing choices in a competitive equilibrium and the solution to a production

cost minimization problem (henceforth, cost minimization problem). This correspondence is demonstrated

to hold in this setting by Cullen and Reynolds (2017) and follows intuition in earlier work in dynamic com-

petitive equilibriums (Lucas and Prescott 1971; Jovanovic 1982; Hopenhayn 1992). Cullen and Reynolds

(2017) extend these results to a setting with repeated entry and exit into hourly electricity markets and non-

convexities in the aggregate production technology. Establishing that the correspondence holds in hourly

wholesale electricity markets requires the additional assumption that firms are small relative to the total size

of the market. With this additional small firms assumption, the model is applied to find the solution to a

cost minimization problem.

The cost minimization problem is to find the allocations of production and e�ciency investments across

all firms in the electricity portfolio that minimize the costs of meeting hourly electricity demand. Initially,

costs will include carbon prices and exclude local air quality damages as in the empirical setting; subsequently,

a counterfactual simulation will modify costs to include local air pollution damages as well. To define the

cost minimization problem, I introduce additional notation to collect production quantities and investments

across all firms into vectors. Define j as a vector of investment choices for firms i 2 {1, ...,U}, where

ji 2 J 8i, and denote the set of feasible j as J . Similarly, let q be a U-sized vector of production quantities

corresponding to each firm, where qi 2 {0, qi,min, qi,max} 8i, and let Q denote the set of feasible q. Then an

allocation {j,q} is feasible if j 2 J and q 2 Q. Let a be a U-sized vector with binary elements ai 2 {0, 1}

indicating whether firm i was on in the last period. The costs, G, associated with electricity demanded for

a given demand state, ⌘t, are defined as:

G(⌘t, ht,at�1,!,q) =
UX

i=1

[mciqi � (ai,t�1 = 0, ait = 1)i]. (8)

As with the exposition of the firm problem, I formulate the investment choice-specific value functions

for the production decision for a given j:

W
2j(⌘t, ht,at�1,!, c) = max

q2Q
{�G(⌘, ht,at�1,!,q) + �E[W 2j(⌘t+1, ht+1,at,!,q)]. (9)

The first problem is to choose the optimal investment vector j where � now corresponds to the sum of

investment costs associated with investment vector j and where v denotes the U-sized vector of stochastic
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shocks to investment costs:

W
1(s) = max

j2J
{�̃E[W 2j(s)]� �(j,v, �)}. (10)

2.5 Discussion of mechanisms

2.5.1 Impact of carbon price on firm market share with static e�ciencies

In this section I review the impact of the carbon price on firm market share, denoted ⇣i = qi/q
d, where

q
d denotes hourly residual demand for the fossil portfolio. I review this by holding e�ciencies fixed, i.e.

without considering investment, so as to isolate the impact of the carbon price all else equal. Understanding

whether, and to what extent, market shares change as a result of the regulation is critical to this paper’s

analysis as changes in the spatial distribution of local air pollutants are driven by production reallocation

across firms. Without production reallocation, the relative distribution of pollutants is unchanged even if

there are aggregate local air quality co-benefits from reducing total emissions. I demonstrate that with

static decision-making the carbon price does not lead to reallocation of production across firms and thus

does not provide for a change in the distribution of local air pollutants. Then I show that in a dynamic

setting production reallocation can occur. I illustrate that with all else constant, market shares are weakly

increasing among the more e�cient firms (i.e. decreasing in !), @⇣i

@!i
 0.

First, let us review the impact of a carbon price on aggregate hourly supply curves in a static framework.

When production decisions are made statically, aggregate hourly supply curves can be constructed with

marginal costs alone. Given the technical features of production in this setting, marginal costs can be

modeled as a constant function of firm e�ciency and fuel cost, so the supply curve reflects a ranking of the

firms by e�ciencies.18 To study the impact of the carbon price on the supply curve, we need to evaluate

how the carbon price changes firms’ marginal costs. Equation 5 shows that with ⌧ > 0, @
2
mci

@!i@⌧
= e

f . Since

e
f
> 0, we see that the increase in marginal costs following the introduction of a non-zero ⌧ is increasing

in the firm’s heat rate, !i. That is, the increase in marginal costs is larger for the relatively less e�cient

firms. Then, the carbon price increases the slope and intercept of the supply curve, but does not change the

ranking of the firms by marginal costs.

Figure 1 illustrates supply curve changes following the introduction of ⌧ > 0.19 As earlier, hourly

electricity demand is assumed to be inelastic to wholesale electricity prices, so the quantity demanded

18The ranking of firms by costs is called the “merit order” in electricity markets.
19In the model, firms supply discrete quantities in this market, so the supply curve is a step function

composed of discrete quantities of generation from each firm.
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following the carbon price in the near-term is the same. Then, at a given level of demand, qd, the share

of demand provided by each firm, ⇣i, is the same following the imposition of the carbon price, while the

wholesale electricity price is higher. Thus, a static model of electricity production predicts no production

reallocation across firms as a result of the carbon price, and hence no redistribution of local air pollution.

If we relax the assumption about inelastic demand and introduce some price responsiveness, we still see no

reallocation of production across firms; rather, the most costly firms on the margin would reduce production

as demand is reduced from the higher wholesale price, which would lower local pollution around the marginal

plant.

This result is driven by characteristics of cost structure in this empirical setting and the current set of

abatement options. Under current economic conditions for the cost of abatement technologies, the least-cost

approach to reduce GHG compliance costs among these natural gas units is to burn less fuel (e.g. become

more e�cient or produce less). A related outcome of the conditions in this empirical setting is a monotonically

decreasing relationship between pollution intensity and firm e�ciency. This relationship drives the results of

this study and is important to evaluate the external validity of this result. When pollution intensity and firm

ine�ciency are not monotonically linked, as may be the case in other electricity markets with coal power for

example, then re-allocation under a carbon price can occur in a static framework.

For another example of a setting without this aforementioned relationship between pollution intensity

and firm ine�ciency, consider a world where a technology such as carbon capture and storage (CCS) were of

lower cost and observed as an equilibrium abatement choice. CCS provides a way of abating GHG emissions

without requiring a reduction in fuel burn, where carbon is captured from pollution sources after production.

Suppose firms are heterogeneous in their costs of adopting CCS. A firm that adopts CCS at low cost could

re-position itself on the aggregate supply curve. However, absent equilibrium abatement technologies that

re-position firms along the supply curve, in a static framework, the carbon price leads to zero reallocation of

production across firms as the policy does not change the ordering of firms on an marginal cost (equivalently,

e�ciency) basis.

Let us now turn to the impact of the carbon price on production when a firm’s participation in hourly

electricity markets is a function of both marginal costs and start-up costs. Consider two infra-marginal firms,

a and b, which have the same operating capacity. Suppose that before the carbon price is introduced, the total

costs of production are the same for the hour of production when both firms are not previously operating,

(qamca + a) = (qbmcb + b), which implies that in the cost minimization problem presented above, we are

indi↵erent to which firm is producing. Further suppose that mca < mcb, which means that a > b for the

above to hold. From the discussion earlier, we know that the carbon price increases marginal costs more for

firm b than for firm a. On the other hand, start-up costs are predominantly composed of non-fuel related
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costs, which means the majority of these costs are una↵ected by the carbon price.20 If the relative change

in start up costs is small compared to the change in marginal costs, in the cost minimization problem we

now prefer firm a over firm b, whereas before the policy we were indi↵erent. This is the theoretical channel

in which production reallocation could occur. The extent to which it occurs in an empirical question, and

depends on how much production capacity in the regulated industry is available from firms with relatively

higher start-up costs and lower marginal costs.

A broader point can be made here about how environmental regulation impacts individual production

decisions and aggregate supply curves. When regulations increase the cost of a polluting input, input costs

increase, and firms that e�ciently convert inputs to outputs are rewarded. When production decisions

include costs unrelated to inputs, a firm that was less competitive because of a high non-input related

cost now becomes more competitive. Production reallocation from a regulation stems from the impact

of the regulation on the relative competitiveness of firms on the output market. Settings in which post-

regulation pollution intensity is monotonic in pre- and post-regulation firm competitiveness do not provide

for production reallocation. In these settings, the presence of non-input related costs, such as start-up costs

as in this paper, or compliance technologies that re-rank firms’ competitiveness on the output market as

with the CCS example, create the scope for reallocation. The motivation to study production reallocation

in this paper is to predict the spatial reallocation of negative pollution externalities across alternative policy

scenarios. However, this question is also highly relevant to other research agendas, for example, to understand

a regulation’s impact on production leakage, and other local production externalities such as impacts on local

employment and wages.

2.5.2 Impact on incentives to invest

Here I review two theoretical predictions relating to the impact of the carbon price on investments

in e�ciency. The first is that investments to improve e�ciency (reduce !) are increasing in ⌧ . This is

straightforward from the formulation of the marginal cost function. Since @mci
@!i

= c
f + e

f
⌧ , ⌧ > 0 increases

the returns to reducing !, so that investments to improve e�ciency will be weakly increasing in ⌧ .

Next, I demonstrate that under certain conditions, private and social returns to investment are increasing

in ⇣i. Let the private net returns to investment j be the production cost savings from e�ciency improvements,

and let the social net returns be avoided damages from emissions.21 As shown above in the model, investment

20Kumar et al. (2012) estimates fuel costs to be around 1 to 2 percent of start-up costs from gas-fired
combined single and simple cycle large frame, and 30 percent for gas-fired steam turbines.

21We can incorporate the fact that damages include global and local emissions by thinking of ⌧ and e as
vectors of global and local emissions and damages, respectively, since emissions of local pollutants are also
increasing in !. Distinctions in damage types are omitted here for simplicity.
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j corresponds to new e�ciency !i = !
0
i
(1 + �) � ji. For a given P and q

d, private net returns in a given

period are (!i � !
0
i
)cfqi and social net returns are (!i � !

0
i
)⌧efqi. It is clear then that the discounted sum

of both private and social net returns over future periods is increasing in qi and therefore also increasing in

⇣i for a given level of demand.

Now, compare the payo↵s of investment across firms. If investment costs are not a function of current

heat rate, as formulated in this model, then it is clear from the above that higher payo↵s are achieved from

improving the e�ciency of the firms with higher market shares. To further explore this result, now assume

that it is more costly to improve the relatively more e�cient firms, so that costs are now a function of

pre-investment e�ciency with @�i
@!i

< 0. Suppose that firms one and two have !1 < !2; investment decisions

j
0
1 and j

00
2 cost the same, i.e., �(!1, j1) = �(!2, j2); and !1 � j

0
1 < !2 � j

00
2 . In this setting it is still optimal

to invest in firm one when:

(!1 � !
0
1)(c

f
q1 + ⌧e

f ) > (!2 � !
0
2)(c

f
q2 + ⌧e

f )

q1 >
1

cf

⇣h
!2 � !

0
2

!1 � !0
1

i
(cfq2 + ⌧e

f )� ⌧e
f

⌘
.

(11)

This result illustrates that if the market share of a given firm is su�ciently large such that the above

holds for the observed distribution of pre-investment e�ciencies, other firm market shares, and investment

cost parameters, a policy subsidizing e�ciency improvements yields the highest private and social returns

when targeting higher market share firms.22

3 Empirical Strategy

The model above is used to characterize the firm’s optimal investment decision and recover its optimal

policy function for production (dispatch policy function). First, I group firms into N representative firm

types. Then I use the optimal investment decision and dispatch policy functions to simulate hourly market

outcomes of production for each firm type under alternative policy scenarios. I solve the cost minimization

problem in two parts. First, I find the cost minimizing solution to meeting hourly demand across di↵erent

investment portfolios j. That is, I recover investment choice-specific policy functions for production for JN

investment portfolios.23

22This result is further discussed in Weber (2021).
23To reduce the computational burden, I evaluate N = 5, that is, I consider five firm investment type

groups. Further, I set J = 2 so that each firm investment type has the option to invest or not. When a given
firm investment type invests, all firms of that type invest and reduce their heat rate by 1.5 percent, which is
the average heat rate improvement observed in the data among investing firms.
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Next, I use each of these policy functions to simulate di↵erent sequences of hourly market outcomes

over three years, and I sum the discounted production costs associated with each outcome. Then I use the

estimates of investment costs (discussed subsequently), to find the optimal investment decision j⇤ given the

estimated production costs across each scenario. Next I use simulations from the dispatch policy function

associated with j⇤ to compare market outcomes across alternative input cost states. I discuss this process in

further detail below.

3.1 Dispatch Policy Function

The first step is to recover investment choice-specific policy functions for dispatch. I first group firms

into representative firm types based on e�ciency and size, as these characteristics describe the heterogeneity

across firms that enters the cost minimization problem. I use k-means clustering and scree plot analyses to

establish firm type groups. Details on this process are described in Appendix 8.4. Let i refer to firm type

rather than individual firms, i 2 {1, ..., N}, with N = 10. Let a be a vector with elements ai indicating the

number of firms of type i that were operating in the last period. The optimal dispatch policy function for

each investment choice j is denoted �
j(⌘, h, a,!j

, ic). The policy function maps state variables to q, which

has N rows and two columns, where the entry in row i column one corresponds to the number of firms of

type i operating at their minimum generation level, and the entry in row i column two corresponds to the

number of firms of type i that are operating at their maximum generation level. The total number of firms

on at either operating level is constrained by the total number of firms of that type, and the optimal dispatch

policy for each state will satisfy condition (7) without violating any constraints.

I use policy function iteration to find the optimal policy function for each j 2 J , using an initial estimate

of firm type start-up costs from the literature and an exogenous discount rate.24

3.2 Optimal Investment Choice

After the optimal dispatch policy �
⇤j(s) is recovered for each j investment scenario, the optimal invest-

ment choice j⇤ is made by solving (7), using the sum of discounted production costs over three years as a

measure of the value of each investment scenario.

24The initial start-up cost guess is $80 per MW, which was the calibrated estimate used in Cullen and
Reynolds (2017). To set a discount rate, I use a one-year interest rate of 4.1 percent, implying an hourly
discount rate of 0.99954130.
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3.3 Identifying and Estimating Structural Cost Parameters

The structural cost parameters in this model that are not observed by the econometrician are the firm’s

start-up costs and the cost of investment activities.

I estimate start-up costs with the following identification argument and estimation approach. In the

context of the firm problem, start-up costs can be identified by the di↵erence in a firm’s willingness to operate

across two states that di↵er only in the lagged operating state. In the cost minimization problem, under

the assumption that the empirically observed dispatch is cost minimizing, start-up costs can be identified by

comparing the di↵erence in dispatch implied by solving the cost minimization problem in a given state with

an initial guess of start-up costs, 0
i
, versus the empirically observed dispatch for the same state. Accordingly,

I estimate start-up costs, ̂i, by evaluating the di↵erence between cost minimizing dispatch implied by the

dispatch policy function recovered for some 
0
i
and the empirically observed dispatch. Specifically, I use

a generalized method of moments approach (GMM) to find the ̂i that minimizes deviations between the

simulated dispatch and empirical counterparts across like states. Details about this procedure are provided

in Appendix 8.3.

To estimate investment costs, I first identify evidence of persistent heat rate improvements that indicate

investment are described in Appendix 8.5. Next, I use a simulated method of moments (SMM) approach

with the following identification argument. In the cost minimization problem, under the assumption that

empirically observed investments are cost minimizing, investment costs can be identified by the di↵erence in

investment behavior observed empirically and that implied by finding the investment decision that minimizes

production costs given an initial guess of investment costs, �0.

To implement the SMM approach, I first estimate investment-conditional choice probabilities (ICCPs)

from the observed investment decisions by firm investment type. Then, I simulate investment moments

using these ICCPs. I compare these simulated investment decisions to the investment decisions generated

from solving equation 10 with an initial guess of investment costs, �0. The value function in equation 10 is

approximated with the three-year production costs associated with the investment scenario, plus the costs

of investment. The production cost estimates are calculated from the forward simulation performed with

the recovered investment choice-specific dispatch policy functions, �⇤2j(·). As discussed earlier, I assume the

investment cost shock comes from an extreme value type 1 distribution, and I estimate the location and scale

distribution parameters for the shock from the SNL data. Then I estimate �̂ by finding the parameter that

minimizes the distance between the simulated moments using the ICCPs from the data and the investment

decisions implied by the model. The advantage of using the SMM approach here is that it provides additional
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investment moments to match, which is useful in this setting as otherwise there are very few moments.25

Additional detail about this procedure is provided in Appendix 8.2.

3.4 Estimating the Demand Process

The first step on the demand side is to estimate the demand shock process, which determines the

wholesale price that firms in the market are paid in each hour. To estimate the demand shock process I

consider two demand states, high and low. I define a high state in the data as any demand state above the

median demand for that hour, and a low state as any below. I estimate the probability that the demand

state in a given period is ”high” with the following specification:

[qh = high
⇤
= ↵+ ⇠ [qh�1 = high] + ✏

8 h 2 {1, ..., 24}
(12)

where high = 1 if the demand state is above the median demand in that hour, and qh�1 denotes the last

period’s demand state. This model is estimated separately for each hour of the day, and the coe�cient esti-

mates for ⇠ are the inputs to the transition probability matrix for that hour. This parsimonious specification

explains over 70 percent of the variation in high and low demand states over the period 2013 - 2015; the

results from a modified version of this specification estimated over all hours of the day and including hourly

fixed e↵ects are provided in Table 7. Further details are provided in the Appendix Section 8.6. To estimate

the profit maximization problem for each firm, the price for each demand state can then be estimated as the

average hourly price observed in that demand state. In this estimation strategy, however, a cost minimiza-

tion problem is solved instead of a profit maximization problem as discussed in Section 2.4. Accordingly, for

this problem only the demand process needs to be estimated.

As shown in Figure 1, prices each hour are determined by the marginal natural gas firm for a given

quantity of hourly electricity demand. Given the presence of resources that are preferred for dispatch over

natural gas firms, we can think of the natural gas firms as satisfying each hour’s “residual demand”. Residual

demand denotes the total hourly demand less energy supplied by resources preferred for dispatch such as

zero marginal cost resources like solar and wind energy, and other lower cost resources such as hydro-electric

and nuclear energy, and any electricity imports. Accordingly, a positive shock to renewable energy supplied

in any hour impacts the price process in the same way that a negative shock to demand does; both shift the

25On the other hand, GMM is su�cient to recover start-up costs, as in that setting there are many
dispatch moments available across di↵erent states.
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residual demand curve inward.

A key feature of California’s energy market during the time period of this study is the large presence of

renewable energy and the state’s aggressive renewable portfolio standards. The demand process estimated

here is inclusive of existing levels of renewable resources, and any other preferred resources, over the time

period in which the demand process is estimated, 2013 - 2015. As discussed earlier, the objective of this

paper is to provide a near- and medium-term analysis of the impact of the carbon policy. The price process

estimated here is not expected to hold over longer term horizons in which the quantity of renewable energy

is expected to increase. Future research could explore how changing this price process, for example, under

a high renewable energy penetration scenario, impacts the results of this model.26

4 Empirical Setting

4.1 Data Sources

Estimating this model requires observing size, e�ciency, and location, as well as hourly production

quantities, fuel inputs, and emissions for all firms regulated by the cap-and-trade program in California.27

Firm-characteristics and hourly production and emissions quantities are obtained from the subscription-

based data provider SNL, which compiles data collected through various federal reporting requirements.

SNL data include those from continuous emissions monitoring systems (CEMS), which exhibit some data

anomalies related to heat rates reported for combined cycle units. Periods of unrealistically high and low

heat rates indicate data error, likely stemming from periods where these units report generation and/or fuel

inputs from one and not both of the steam and gas units. Further detail about how this is addressed is

provided in the Appendix 8.9.

To connect changes in firm emissions of local air pollutants to damages from human health impacts, I

use marginal damage per ton estimates from the Air Pollution Emission Experiments and Policy Analysis

Model (AP3) (Clay et al. 2019). AP3 is an integrated assessment model that estimates monetary damages

of air pollution exposures and physical e↵ects in the contiguous United States. The publicly available AP3

26Over longer term horizons, the direction of the change in total residual demand is not obvious. For
example, a growing California economy would increase residual demand, while increasing renewable energy
standards would decrease residual demand. Further, longer time horizons would provide time for electricity
rate proceedings to adjust in response to wholesale prices, which could lead to an increase or decrease in
consumption depending on whether or not renewable energy penetration and other trends have dampened
prices.

27Hourly prices are also obtained from publicly available data maintained by the California Independent
System Operator (CAISO) to estimate inferred profits in Figure 2.
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data provides estimates of a pollutant specific damages for pollutants emitted by a source located in a given

county. This estimate represents the sum of the marginal damages of that pollutant in all other counties to

which the pollutant disperses. This paper uses two types of estimates from AP3: one, the estimates of the

marginal damages of a pollutant emitted in a given county, and two, county-specific estimates of the marginal

damage of an additional pollutant to that county. The latter serve as inputs to the former calculation in

AP3 and were made available by the AP3 authors for this paper. The estimates of damages from pollution

sources are used in this paper in the Pigouvian tax scenario to set a pollution tax at the economically e�cient

level, equivalent to the marginal damages of the pollutant. The estimates of the damages to a county from

an additional pollutant are used to estimate damages that result in each of the scenarios.

Over the 2012 to 2015 period, the portfolio of fossil-fuel generating units operating in this period in CA

consists of around 200 producing units across steam, gas, and combined cycle combustion turbines, with

summary statistics available in Table 1.28 To reduce the computational burden of estimating this model,

these units are grouped into 10 firm types as discussed previously, based on firm heat rates and sizes, with

summary statistics provided in Table 2. The process to establish firm type groups that explain the most

variation in firms along these two dimensions is explained in Appendix 8.4.

The model in this paper assumes that the market is competitive, where the actions of the electricity firms

do not impact prices. While the well-known Wolak, Borenstein and Bushnell (2000) paper finds evidence of

market power in the California electricity market, the market has undergone significant changes since the

study period evaluated in that paper. In particular, in early 2009 the CAISO implemented a host of market

reforms intended to improve price transparency and prevent market manipulation as part of its Market

Redesign and Technology Upgrade (MRTU). MRTU improved the grid operator’s ability to manage real-

time congestion with day-ahead generation and transmission schedules, increasingly local marginal pricing by

moving from three to 3,000 price nodes, and created an integrated forward market for electricity, transmission

capacity, and reserves (CAISO 2009). Through MRTU and other reforms the grid operator in California

has evolved significantly in its ability to detect and prevent market manipulation since BBW’s analysis. For

example, CAISO currently maintains a process to submit local market power mitigation bids in locations

and times that may present opportunities for local market power, such as in heavily congested times and

regions. Further, the Herfindahl-Hirschman Index (HHI) for the natural gas units is 0.06, and the majority

of units provide less than two percent of total fossil-fuel generation. While these facts do not entirely rule

out the presence of non-competitive behavior, the modeling approach in this paper can be understood as

predictive of market outcomes when firms behave competitively, which, as the market monitoring reports

28In 2013, coal units are included in the data; however, these units are located outside of the state and
thus not included in this table nor in the estimation.
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from California’s grid operator suggest, has been the case for the large majority of hours studied in this

paper.29

4.2 Descriptive Assessment

Understanding the impacts of the GHG policy on local air quality outcomes requires characterizing

changes in market shares and e�ciencies as a result of the carbon price, as well as the spatial distribution of

these changes. Section 2.5 provides the theoretical prediction that market shares would be weakly increasing

among more e�cient firms following the introduction of the cap-and-trade program. For a descriptive

assessment of what has happened in the program, I estimate changes in firm market share by comparing the

average share of total hourly demand provided by each firm in 2015 to that provided before the cap-and-trade

program started in January 2013. I plot these market share changes by the firm’s average heat rate over

2012 - 2015. The graph in Figure 3 shows a negative relationship between market share changes and heat

rate, supporting the theoretical prediction, with a pairwise correlation coe�cient significant at the 0.10 level.

To connect changes in market share to the spatial distribution of damages from local air pollutants, I

plot market share changes by the AP3 estimate of county-specific NOx damages where the firm is located. I

do not posit a theoretical prediction for the trend. The trend depends on the location of firms that increase

(decrease) market share, and the location of counties with high (low) NOx damages.30

The graph in Figure 4 exhibits a negative slope, with a pairwise correlation coe�cient significant at the

0.10 level. The implication of these two descriptive results is that the program leads to some market share

changes in the direction expected. In addition, there is some evidence that these changes occur in counties

where sources emit pollutants with lower damages. Next, I plot the changes in firm e�ciencies by the air

pollution damage estimate where the firm resides in Figure 5. The figure does not exhibit a trend among

heat rate improvements and the local marginal damages from air pollution, and the pairwise correlation

coe�cient is not significant at the 0.10 level.

The next section presents the results from my model which isolates the impact of carbon prices on

market outcomes of production and e�ciency changes holding other market features fixed and incorporating

dynamics in decision-making.

29CAISO’s quarterly market monitoring reports for 2014 and 2015 find the overall combined wholesale
cost of energy was around (including slightly below, close to equal, and slightly above) their simulated
competitive baseline prices under competitive conditions, with some price spikes in a small set of intervals
in the second half of 2015 and in Q4 2015 (CAISO 2014, 2015).

30Further research could explore determinants of the spatial location of the firms, including by character-
istics that determine whether a firm is likely to increase or decrease production following a regulation.
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5 Results

5.1 Model Fit

To review model fit, I compare simulated dispatch outcomes from policy functions recovered with heat

rates corresponding to firm average heat rates in 2012 to observed dispatch outcomes in 2012. Doing so

requires first estimating start-up costs. As discussed above, start-up costs are estimated as the firm type

length vector that minimizes the di↵erence between observed dispatch quantities, and dispatch quantities in

a simulation with policy functions recovered with zero cost start-ups. I estimate start-up costs using 2012

dispatch outcomes. Details on the estimation and simulation procedure are provided in Appendix 8.1.

I perform T-tests of market share observations in the simulation and those observed empirically, paired

by hour of the day and firm type. Table 4 shows that the shares by hour and firm type are not statistically

di↵erent across simulation and empirical dispatch. Next, I develop hourly average generation quantities and

plot them by firm type for the simulation and empirical dispatch, provided in Figure 6. The figure visually

shows the model fits most but not all firm types well. For example, firm type 9 is not dispatched in the

model, but is dispatched empirically. These di↵erences could reflect that the observed dispatch is not strictly

cost-minimizing and/or that there are other constraints that the California electric grid operator faces in

scheduling firms for dispatch that the model does not capture. For example, local transmission constraints

could lead more costly firms to be scheduled to meet local demand in congested regions and hours. I view

the model and simulation procedure as predictive of a least-cost dispatch, excluding hours and firms which

are dispatched for other reasons not included in the model.

Before the model can be used to simulate counterfactuals, investment costs must be estimated. To do this,

I recover dispatch policy scenarios for a set of investment scenarios. I then use these investment scenarios

to simulate market outcomes and calculate the discounted sum of costs associated with each investment

scenario. I recover the investment cost that rationalizes the investment conditional choice probabilities

observed in the data, given the production cost savings associated with alternative investment scenarios.

Further details on this procedure are provided in the Appendix.

5.2 Stringent Carbon Policy Scenario

A more stringent climate change policy corresponds to a tighter GHG emissions cap, which increases

carbon price and leads to more abatement.31 To evaluate the market outcomes across climate change policy

31The California cap-and-trade program coverage is broader than the electricity industry, and the equi-
librium permit prices are determined by abatement costs across all regulated sectors.
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stringencies, I compare production and emissions outcomes across alternative carbon prices including a

permit price equal to zero (henceforth, no carbon policy scenario), and a policy that leads to permit prices

of $36 and $105 per ton of CO2e (2007 USD), corresponding to the Obama Administration’s Interagency

Working Group on the Social Cost of Greenhouse Gases central and high estimate of damages for CO2

emissions emitted in 2015 with a 3 percent discount rate (henceforth, the SCC carbon policy scenario) (EPA

2017). The average fuel cost, cf , over 2012 - 2015 was $3.6 per MMBtu, and the average permit price over this

period translates to $0.70 per MMBtu ($13 per ton CO2e). The SCC carbon policy scenario translates to an

additional $2.2 per MMBtu of input cost. As shown in equation 5, in the model the carbon price enters the

firm’s profit maximization problem (equivalently, the cost minimization problem) by increasing the cost of

inputs. Accordingly, I evaluate market outcomes across four input cost states c = f+⌧ , ⌧ = {0, 0.70, 1.9, 5.7}.

In simulating outcomes across policy stringencies, I leverage the dual decision framework of the model to

evaluate the impact of carbon prices together with endogenous e�ciency investments that respond to these

prices. To do so, at the beginning of the cap-and-trade program I find the cost-minimizing investment decision

for all firm type e�ciencies. Equivalently, in the profit maximization framework firms decide whether to

invest to improve their e�ciency or not, assuming that all other firm types make optimal investment choices.

Investment decisions are made by finding the investment portfolio that is cost minimizing with respect to a

market outcomes over a time period T = three years, using the estimated investment costs.

If the California market is stationary, then some T provides a reasonable comparison of the value functions

across investment portfolios, and this decision will satisfy equation 10, corresponding to the decision to

maximize value over an infinite time horizon. However, I consider that the California market will evolve over

longer time horizons, for example, from increased renewable energy penetration, and I view this modeling

choice as consistent with the near- and medium- term objectives of this paper’s analysis. Further, I view

this choice as reasonable in the context of firms’ decision-making in this setting, noting that this assumes

that firms make e�ciency investment decisions myopic to outcomes after T . I sum investment costs and

discounted production costs for each evaluated investment portfolio over the simulations and then choose

the investment portfolio in each carbon policy that minimizes costs.

Once the optimal investment and dispatch policy functions are identified, market simulations can be

performed across input cost states. Figure 7 shows the results of these simulations, comparing the total

generation provided by firm type in the current and medium and high carbon price scenarios compared

to a no carbon policy scenario including endogenous investment. The figure illustrates that the current

carbon price leads to minimal production reallocation across firm types. This result corresponds to minimal

reallocation of local air pollutants, and minimal co-benefits (and co-costs), as a result of the policy. Higher

carbon prices in the medium high and high carbon price scenarios lead to more noted production reallocation.
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These results suggest that the current price is small relative to other production costs, such that is doesn’t

alter firm decision-making. Only carbon prices in the SCC and high SCC scenario are large enough to alter

firm decision-making compared to a no carbon policy scenario.

Table 5 summarizes the changes in market share by firm characteristics. Unconditional on fixed costs and

size, counterfactuals with higher carbon prices lead firms with higher marginal costs to decrease production

relative to a no carbon price scenario. Conditional on marginal cost, firms with higher start-up costs decrease

market share. However, conditional on marginal costs and size, firms with higher start-up costs increase

market share. This is because the estimated start-up costs are positively correlated with firm size, and

column three shows that relatively smaller firms are dispatched more often in counterfactuals with higher

carbon prices. Thus, after controlling for size, we see that firms with larger start-up cost are used more

often in high carbon price counterfactuals. Overall, column three confirms our theoretical prediction: higher

carbon prices lead to a preference for relatively higher start-up and lower marginal cost firms, conditional

on firm size.

Figure 7 shows the change in NOx damages from the production reallocation that occurs in the medium

and high carbon policy scenarios. This calculation is done by connecting changes in generation by firm type

to the location of firms and the NOx damages that result from those firms’ emissions. The figure shows

that generation reductions correspond to avoided NOx damages, though the relationship is not one-to-one.

This stems from the spatial heterogeneity of NOx damages across the state. Overall, the medium high and

high carbon policy reduces NOx damages by around $3.5 and $5.1 million, respectively, over one calendar

quarter compared to a no carbon policy scenario.32 The current carbon price leads to minimal production

changes compared to the no carbon price counterfactual, decreasing damages by $0.4 million for 1 calendar

quarter.

To understand which communities are receiving the benefits in these policy scenarios, I connect changes

in NOx damages to the communities in which they occur in California. Since the observed carbon price

counterfactual showed little variation compared to a no carbon policy, I focus on the medium high (central

SCC estimate) carbon price scenario here. Figure 8 plotsNOx damages avoided in a county in the high carbon

price scenario, by a measure of counties pre-existing pollution burden, county-average CalEnviroScreen

scores. The CalEnviroScreen model was developed by the O�ce of Environmental Health Hazard Assessment

(OEHHA) to develop a numeric rating for the relative pollution burdens and vulnerabilities across census

tracts in California (OEHHA and CalEPA 2017). The California Environmental Protection Agency (CalEPA)

uses these scores to identify communities in the state with disproportionate pollution burdens, and such

32For reference, the no carbon policy scenario is estimated to lead to $24.7 million damages from NOx

pollution over one quarter.
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communities are identified as ”disadvantaged communities.” The figure shows a positive trend in NOx

damages avoided and pre-existing pollution burdens as measured by the CalEnviroScreen score, indicating

that avoided damages in the medium high carbon price scenario would happen in counties with relatively

higher pre-policy pollution. The map in figure 9 plots these avoided damages on top of a map of California’s

disadvantaged communities, showing that reductions occur more frequently in these communities.

5.3 E�ciency Investment Scenarios

Minimum e�ciency standards and other command-and-control type of policy mechanisms are frequently

encountered in the energy sector as alternatives to market-based GHG regulation. For example, the Cor-

porate Average Fuel Economy (CAFE) standards for vehicles and the U.S. National Ambient Air Quality

Standards (NAAQS) for stationary sources establish maximum thresholds of pollution intensities. In this

section I consider the impact of this type of policy in this setting by evaluating the private and social returns

from alternative portfolios of e�ciency improvements. The portfolios could stem from a policy that, for

example, established minimum carbon intensity standards or subsidized e�ciency investments for certain

types of firms.

To compare alternative investment scenarios, I evaluate the set of heat rate vectors that would result

from di↵erent combinations of firm type investments. I group the firms into five types based on heat rates

and the previous firm type grouping, and I will refer to these five types as investment firm types.33 I allow

each investment firm type to choose to invest or not, where investment results in a 1.5 percent reduction in

heat rate, which is the average heat rate reduction observed in the set of firms identified to invest over the

2013 - 2015 time frame.34 The result is 25 alternative investment decision scenarios j, mapping to J = 32

di↵erent 10 by 1 vectors of firm type heat rates where j = 1 corresponds to no investment and j = 32

corresponds to all firms investing.35 The policy iteration that was used in the alternative carbon policy

counterfactuals provides the dispatch policies for each of these investment scenarios, and here I evaluate

market outcomes simulated over three years for each j 2 J investment scenarios. I sum the discounted costs

incurred across each j investment scenario, averaged over simulations S , 1
S

P
T

t=1 �
t�1

G(qj⇤
t |!j), where qj⇤

is determined by the recovered policy function for investment scenario j.

Figure 10 plots the savings in production costs for each of the alternative investment scenarios com-

pared to no investment (henceforth, gross investment returns) across carbon price scenarios. Changes in

33I collapse the ten firm type grouping into five firm type groups by sorting on heat rate.
34Details on the procedure to identify investment are provided in Appendix 8.5
35The 5-type grouping is used only for the investment decision; then, for the purposes of dispatch, the

investment decision is mapped onto the 10-type grouping used earlier.
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gross investment returns are driven by two mechanisms, which I review now in the framework of the cost

minimization problem. One, the investment could change a preference for one firm type over another due to

the improvement in e�ciency (reduction in marginal costs). Two, even if the e�ciency improvement does

not change preferences across firms, and market shares stay the same following the e�ciency improvement,

private and social costs would still be reduced if some of the improved firms have non-zero market share.36

The figure demonstrates that, as expected, the highest gross returns to investment occur in the high carbon

price scenario. This illustrates the theoretical point made in Section 2.5 – the carbon price can increases

the gross returns to investing to increasing firm e�ciency, since the carbon price increases the cost of inputs

and thereby increases the costs avoided from improving firm e�ciency. The expected returns to investment

can be seen as a measure of willingness to pay for e�ciency improvements, and the figure shows that higher

carbon prices increase some firms’ willingness to pay for e�ciency investments.

However, we also see variation in gross investment returns across investment scenarios within a given

carbon price state. While the scenario with the highest gross returns occurs in the high carbon price, the

higher carbon price does not increase the returns for all investment portfolios. The scenarios that do not

lead to higher returns in higher carbon prices are those in which investment occurs among firms that are

dispatched relatively less often. This is shown in Figure 11, which plots the gross savings from investment

compared to the no investment scenario, by the sum of the marker shares of the firms investing in a given

scenario. A clear positive correlation emerges among gross returns and market share. This confirms the

second theoretical prediction made in Section 2.5; in this industry and empirical setting, policy makers

would be better o↵ targeting investment subsidies to the firms with higher market shares, which in this

setting corresponds to the firm with lower pollution intensities.

This result has important implications for environmental regulation, especially in settings where mini-

mum e�ciency standards have been used to meet policy objectives. The findings here contradict the claim

that policy should focus on improving the dirtiest, least e�cient capital to reduce pollution. Rather, here

we see larger gains from improving the lower-cost, more frequently utilized capital, which in this setting cor-

responds to the relatively cleaner firms. Section 2.5 shows the conditions on market shares and investment

costs under which this result would hold elsewhere.

36Whether or not investment in e�ciency improvement changes the ranking of firms in costs depends on
both the quantity of e�ciency improvement evaluated as well as the distribution of e�ciencies. Here all
e�ciency improvements improve the heat rate by 1.5 percent; whether or not such an improvement changes
preferences across firms for dispatch depends on how the firm that improves compares to the firms close to
it in terms of costs.

25



5.4 Local Air Pollution Tax Scenario

An overarching feature of this empirical setting is the presence of one policy regulating an industry that

is responsible for multiple externalities. The e�cient way to address a setting with multiple externalities is

to implement one policy per externality. I simulate this approach by evaluating a counterfactual scenario

with a location-specific Pigouvian tax on NOx emissions.37 In this scenario, firms make production decisions

as earlier, but with augmented marginal costs. Marginal costs now include two compliance costs, one for

GHG emissions and one for NOx emissions. The NOx emissions tax is set to the AP3 estimate of the $ per

ton damages for NOx emitted in county k in which the firm is located. Marginal costs are now calculated

as:

mcik = !i(c
f + e

f
⌧
ghg) + ◆i · ⌧nk , (13)

where ◆i is the firm’s NOx emissions intensity (ton per MWh produced), which is observed from the

CEMS data, and ⌧
n

k
is the tax on NOx in county k, distinct from the carbon price, ⌧ghg. In this scenario

I again leverage the correspondence between the competitive equilibrium outcomes and the solution to a

cost minimization problem. I find the optimal dispatch policy function in a scenario with currently observed

carbon prices as well as the local air pollution tax. The results are summarized in Figure 12, which shows

the change in market shares under the local air pollution tax scenario, as well as the resultant changes NOx

damages.

The simulated market outcomes in this counterfactual show a reduction in NOx damages by $3.4 million

over one calendar quarter, compared to a carbon policy-only scenario at the observed carbon prices.38 Taking

this result together with the earlier results, we see that adding a local air pollution tax to the observed carbon

price leads to a reduction in damages in a similar magnitude as with moving from the observed carbon price

to the medium high carbon price at the central SCC estimate.

37A tax on SO2 is not considered as the quantity emitted by these firms is small. It would be desirable
to consider a tax on PM2.5, but firm PM contributions are not observed.

38
NOx damages in the scenario with observed carbon prices and no local air pollution tax are $24.3

million over one calendar quarter, compared to damages with a carbon price and a local air pollution tax of
$20.9 million.
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6 Conclusion

The results from the simulations present several important findings. Principally, I find that the structure

of the fossil-fuel electric portfolio in terms of marginal costs, start-up costs, and the location of the firms,

does not provide for a meaningful redistribution of local air pollutants under a carbon pricing policy at

the observed prices in California. While this result quells concerns about the potential adverse equity

impacts of the program from electricity sector pollution, it also shows that the carbon price provides minimal

improvements in local air pollution. Higher carbon prices do provide for redistribution of air pollution and

co-benefits from local air quality improvements, and a carbon price at the central SCC estimate provides a

reduction in damages compared to the observed price in a similar magnitude as would be provided by a local

air pollution tax together with observed carbon prices. The results indicate that damages to human health

from local air pollution emitted by the electricity sector can be reduced by either a local air pollution tax in

addition to the carbon price at current carbon prices or by increasing the stringency of the carbon pricing

program.

These findings also provide insights for other regulated industries with dynamic production decisions.

First, they suggest that industries where fixed costs are small compared to marginal costs are less exposed

to market share changes following an increase in the cost of inputs, which has important implications for

analyzing production and emissions leakage potential in other regulatory settings. Second, they are instruc-

tive in evaluating alternative investments in e�ciency. The imposition of minimum e�ciency standards is a

common tool in environmental and air quality regulation, yet in this setting, such a standard would lead to

far fewer savings in production costs and NOx damages avoided as compared to a regulation that improved

the e�ciency among firms with lower pollution intensities. This finding is driven by a key characteristic

of the firms studied here — for the portfolio of natural gas firms, pollution externalities are decreasing in

production e�ciency, and this finding may be generalizable to other industries with this feature.
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7 Tables and Figures

Table 1: Fossil Unit Summary Statistics, CA 2012-2015

2012 2013 2014 2015

Num. units with non-zero production 221 193 207 201

Steam turbine 50 37 39 37
Gas turbine 90 85 87 87
Combined cycle 81 71 81 77

Mean capacity MW 139 148 134 136
Total capacity GW 30.6 28.7 27.8 27.3

Num. units with capacity change up or down . 3 2 2
Max MW capacity change . 6.5 0.9 10

Mean heat rate (Btu per KWh) 9183 8943 8891 8966
Median heat rate (Btu per KWh) 7797 7318 7511 7579
Percent of hours operating .35 .30 .35 .35

Table 2: Unit Characteristics by Type

Type Num. Size 2012 MC
Num. Units MW HR Rank

1 16 87 17606 4
2 10 77 9327 5
3 14 88 7594 3
4 8 73 8412 4
5 33 184 7012 2
6 6 201 6566 1
7 26 131 13910 10
8 40 101 12330 8
9 32 191 11324 7
10 26 173 10572 6
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Figure 1: This figure shows the impact of the carbon price on an illustrative supply curve
for a given hour t. Following the carbon price, the portion of the supply curve composed of
natural gas firms shifts up and increases in slope from mct to mc0t.

Figure 2: This figure plots average profits per hour without start-up costs, i.e. q(P �mc),
for natural gas firms on the y-axis, versus hour of the day on the x-axis.
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Figure 3: This figure compares market shares, ⇣i, pre- and post- the carbon price (2012 to
2015) on the y-axis, versus the average firm heat rates, !i, over the same period on the
x-axis. Observations above (below) the 95th (5th) percentiles are removed for visual ease.
A linear trend line is shown in blue; the pairwise correlation coe�cient is significant at the
0.10 level.

Figure 4: This figure plots each firm’s change in market share pre-and post- the carbon price
(2012 to 2015) on the y-axis, by the AP3 estimate of marginal damages from NOx on the
x-axis. Observations above (below) the 95th (5th) percentiles are removed for visual ease.
A linear trend line in shown in blue; the pairwise correlation coe�cient is significant at the
0.10 level.

30



Figure 5: This figure plots each firm’s change in e�ciency pre- and post- the carbon price
(2012 to 2015) on the y-axis, by the AP3 estimate of marginal damages from NOx on the
x-axis. Observations above (below) the 95th (5th) percentiles are removed for visual ease.
A linear trend line in shown in blue; the pairwise correlation coe�cient is not significant at
the 0.10 level.

Table 3: Start-up Cost Estimates by Type

Type Start-up Cost Estimated Asymptotic
Num. at $80 per MW Start-up Cost Variance

1 6960 7,676 0.1267e-08
2 6160 5,885 0.0651e-08
3 7,040 8,977 0.0438e-08
4 5840 7,063 0.06408e-08
5 14,720 10,304 0.1425e-08
6 16,080 20,485 0.2345e-08
7 10,480 10,799 0.4125e-08
8 8,080 9,742 0.4555e-08
9 15,280 11,014 0.4248e-08
10 13,840 10,463 0.5209e-08

Given the computational time to perform the estimation,
asymptotic variance is reported instead of bootstrapped
standard errors.
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Figure 6: The figure compares the average hourly dispatch outcomes by firm type in simu-
lations and empirical dispatch in 2012.

Table 4: Paired T-test for Market Share (MS), Simulated and Empirically Observed

Obs Mean Std. Err. Std. Dev. Ho: (di↵ < 0) Ho: (di↵ 6= 0) Ho:(di↵ > 0)
Pr(T < t) P(| T |>| t |) Pr(T > t)

Simulated MS 21,840 .10 .0012 .1944
Empirical MS 21,840 .10 .0012 .1825 0.4989 0.9979 0.5011
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Figure 7: The graph on the left shows the change in generation provided by firm type for
current and high carbon price scenarios, compared to generation provided in a no carbon
price scenario, inclusive of endogenous investment decisions. The graph on the right shows
the change inNOx damages by firm type at current and high carbon price scenarios compared
to a no carbon price scenario. Damages are summed over one calendar quarter of market
outcomes.

Table 5: Correlations of Counterfactual Results and Unit Characteristics

(1) (2) (3)
Market Share Market Share Market Share

Marginal costs ($10) -0.0988 -0.109 -0.108
(0.0756) (0.0778) (0.0784)

Start-up costs ($1000) -0.0451 0.0302
(0.0697) (0.132)

Size (MW) -0.00708
(0.0105)

Observations 40 40 40

Standard errors in parentheses. Number of observations reflects four scenarios times 10 firm types.
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Figure 8: This graph shows the change in NOx damages within a county in the high carbon
price scenario, compared to the no carbon price scenario. The y-axis indicates the average
CalEnviroScreen3.0 scores of census tracts within a county, where higher values indicate
higher pollution burdens.
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Figure 9: The map shows which areas of California see reductions in NOx damages under a
high carbon price scenario compared to a no carbon price scenario, where darker green indi-
cates larger quantities of avoided damages. These damages are overlaid on the census tracts
identified in California as Disadvantaged Communities, indicated with black outline. Disad-
vantaged communities are defined as those census tracts in California in the top 25 percent
of CalEnviroScreen3.0 scores, as well as census tracts that lack an overall CalEnviroScreen
score but are in the highest 5 percent of pollution burdens scores.

35



Figure 10: This figure plots the gross savings from production costs avoided from investment
compared to no investment across four carbon price scenarios. Each point along the x-axis
represents a unique investment scenario modeled.

Figure 11: This figure plots gross savings in production costs with investment compared
to no investment by the sum of the market shares of invest firms. Each marker represents
a unique investment scenario in a unique input cost state. For each scenario, the y-axis
represents the sum of the market shares among firms investing in that scenario.
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Figure 12: The figure on the left shows how the scenario with a local air pollutant tax in
addition to the carbon policy changes market shares across unit types compared to a carbon
policy alone. The figure on the right shows the corresponding changes in NOx damages.
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8 For Online Publication: Appendix

8.1 Simulation Procedure

This section outlines the simulation procedure used to generate market outcomes.

Simulation uses the recovered policy functions �⇤(·) to forward simulate market outcomes

over one calendar quarter. Simulation of market outcomes occurs at several points in

the estimation process, including as part of the start-up cost estimation, investment cost

estimation, and to simulate market outcomes. Here is it discussed assuming one has already

recovered the optimal e�ciency investment policy, which sets the optimal heat rate vector,

!⇤.

Simulation Steps

1. For a given initial state, set t=0, and draw demand shock ⌘t.

2. Let ! = !⇤ and let c = empirically observed c in 2015 Q1.

3. Use �⇤(⌘t, a0, c, ht|!) to find the optimal dispatch for this state q
⇤
t.

4. Draw a 10 by 1 vector µ from extreme value distribution with location parameters

estimated from dispatch data; add µ to the dispatch that occurs in this state.

5. Simulate ⌘t+1 as the next step of a Markov chain with transition matrix F⌘.39

6. Update the elements at+1 2 at+1 = 1 when elements qt 2 qt > 0 and 0 otherwise.

7. Update ht+1 = ht + 1� (ht = 24) ⇤ 24.

8. Update qt+1 = �(⌘t+1, at+1, ic, ht+1).

39
F⌘ is estimated from the empirical distribution of demand shocks. The Markov chain simulation

proceeds by drawing a random variable ⌘ with the distribution according to the row in F⌘ corresponding to
⌘t. Then the discrete inverse transform method is used to simulate ⌘t+1, which involves drawing a random
variable u from a uniform distribution and comparing to the probability entries in row ⌘t of F⌘.
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9. Update t = t+ 1 and repeat until t = 7160.

Simulation of Production Costs for Three-year Market Outcomes

For the simulations that calculate production costs over three years, the procedure above is

used to generate quarterly outcomes. For each outcome, total production costs are calculated

as the sum of marginal costs and start-up costs based on the firms that are dispatched in

each hourly period. The production costs are then stacked over three years, using a quarterly

discount rate of 0.0034, which corresponds to an annual interest rate of 1.34 percent. The

policy functions are recovered for four di↵erent input cost scenarios corresponding to average

fuel costs plus no carbon price, a carbon price equal to the average price observed 2012 -

2015, and a carbon price equivalent to a $42 and $123 social cost of carbon; in other words

setting the permit price ⌧ = {0, 13, 42, 123} in dollar per ton CO2e. The policy scenario-

specific estimates of production costs use the optimal dispatch decisions indicated by the

recovered dispatch policy function �⇤(·|c) for the respective c scenario.

Simulation and Estimation of NOx Damages

To connect market outcomes to damages to human health, the NOx damages associated with

the simulated market outcomes are estimated.40 In the simulation above, the number and

type of firms that are dispatched in each hour are recorded, ysimt . Each of the 10 firm types

represent a set of firms for which I observe each of their locations in longitude and latitude,

the NOx emissions intensities from the firm’s continuous emissions monitors (CEMS), and

the local marginal damages of air pollutants based on AP3 estimates for the firm’s county.

I allocate the total production assigned to the firm type in the simulation across the firms

of that firm type equally. That is, if there are seven firms in type one, and type one is

dispatched to produce 700 MWh of electricity in a given hour, each firm is allocated 100

MWh of production in that hour. Then I multiply each firm’s allocated production by its

emissions intensity for NOx. I estimate damages to human health by multiplying the firm’s

40As these firms emit small amounts of SO2, the SO2 results are not reviewed.
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NOx contribution by AP3’s estimates of damages from pollution from that firm in any other

county. Total damages are the sum of the firm’s pollution to all other counties.

8.2 Estimation of Investment Costs

I estimate investment costs using a simulated method of moments approach (SMM) as

discussed. First, I recover the policy functions for production across J = 32 investment

scenarios. Then, I use the procedure described in A.1 to forward simulate market outcomes,

and I calculate the total gross production costs associated with three years of hourly market

outcomes for each scenario, V j. Next, I draw an initial investment cost vector, ⇠0 = {�0,↵0},

where � and ↵ are as in equation 2. I select the optimal investment policy based on the

simulated production costs, V j, and the investment costs associated with each scenario

�(j,v, ⇠):

j
⇤(⇠0) = argmax

j2J
(V j + �(j,v, ⇠0). (14)

As in the cost minimization problem discussed in the text, j and v refer the vector of

investment decisions and cost shocks for each firm type, respectively. The investment costs

�(j,v, ⇠) are calculated as
PN

i=1 �j
1/↵
i + vi, where ji 2 {0, 1}; vi is an investment cost shock

drawn from a normal distribution with mean and standard error estimated from the sample

of investment costs observed in the SNL Energy Platform data.

The SNL Energy Platform has data on gross capital and fixed production costs for a

subset of power plants. This subset of power plants corresponds to 14 (28 percent) of the

firms flagged as investing based on the criteria outlined in Appendix 8.5. I use these data

together with the heat rate improvements observed for these firms over 2012 to 2015 to

construct an estimate of mean investment costs per percent heat rate reduction of $72.2

million, with a standard error of $49.7 million.

Next, I use the data to estimate the probability of investment across c di↵erent firm
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investment types.41 I use this probability to simulate S investment decisions, corresponding

to c-length vectors capturing investment decisions for each firm type. jsim denotes the matrix

with c rows and S columns of simulated moments. g(·, ⇠0) = (jsim � j
⇤(⇠0))2, a matrix with

entries corresponding to the squared deviations from the simulated investment moments

and the investment choice made by solving equation 14 given investment costs ⇠0. Denote

M = c ⇤ S, which corresponds to the total number of moments. I reshape g(·, ⇠0) into a

M -sized vector of moments, and estimate ⇠̂:

Q(�) = g(·, �)0Ŵg(·, �)

�̂ = argmin
�2⇥

Q(�),
(15)

where ⇥ is the set of positive real numbers, and Ŵ is estimated as (g(�̂)g(�̂)0)�1.

I use a bootstrap approach to estimate standard errors. Specifically, I estimate the

parameters 500 times, each time taking a random draw of units, and then I calculate the

standard error of these estimates. Investment-conditional choice probabilities within an

investment firm type are developed by averaging investment outcomes across units within

a firm type, conditional on input cost state. In taking random draws for the bootstrap

estimation, I select ten random units within each firm type and then calculate the investment

conditional choice probabilities among those firms.

8.3 Estimation of Start-up Costs

The estimation of start-up costs compares production (dispatch) decisions implied by the

model for a given start-up cost 0 to empirically observed dispatch. The parameter estimate,

̂, is a vector of firm type-specific start-up costs. The simulation procedure in section 8.1

41The use of subscript c here instead of n, which in the text corresponds to firm types, is to distinguish
between firm investment type groups and firm type groups. The estimation approach collapses the 10 firm
type groups to five firm investment type groups for the purposes of investment decisions for computational
speed.
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uses the recovered policy function for dispatch �⇤(·) to simulate market outcomes over the Q1

2012 period using 2012 average heat rates. Let the N -length vector q⇤ capture the outcomes

for all firm types where q⇤n is the dispatch outcome for a single firm type n.

The empirical counterparts are assembled by categorizing each period in the data by the

discretized state variables used in the model which include demand shock, lagged operating

state, input cost, and hour: s = {⌘, a, h}. In constructing the set of moments, dispatch

outcomes are not observed empirically for all states in the model. Further, to simplify the

linking of lagged states in the model to their empirical counterparts, the moments used

are for states where all firms were either on or o↵ in the last period. Denote S as the

number of states used for moments. I assembleN -length vectors corresponding to empirically

observed dispatch by firm type in each state, qe(s). I construct a S-length vector of moments

g(s,0) =
PN

i=1(q
⇤(s,0)�q

e(s))2, that is, the sum of deviations for all firm types in a given

state s. I estimate ̂ as:

Z() = g(s,)0Ŵg(s,)

̂ = argmin
2{

Z(),
(16)

where { is the set of positive real numbers, and Ŵ is estimated as (g(s, ̂)g(s, ̂)0)�1.

8.4 Unit Type Groups

This section explains the process to group firms into firm types. The goal is to group the

firms into a computationally tractable number of firm types, where groups are determined by

firm characteristics that are relevant to the cost minimization problem. The cost minimiza-

tion problem is solved using a vector of firm sizes and e�ciencies as inputs. Accordingly, I

use k-means to cluster the firms that provide non-zero generation to California in 2015 into

groups according to firm size and e�ciency (heat rate). I perform clustering with alternative
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numbers of groups, from 0 to 20, and then examine the tradeo↵ between the number of

groups and the amount of variation explained by the groups. Intuitively, explained variation

should be weakly increasing in the number of groups.

The figure below demonstrates this tradeo↵ across several metrics. The graph on the top

left compares within sum of squares (WSS) across di↵erent number of groups k, and the top

right compares log(WSS) across groups. The graph on the bottom left is the coe�cient ⌘2,

which calculates the proportional reduction in WSS that each k provides, compared to the

total sum of squares (TSS):

⌘2k = 1� WSS(k)

WSS(1)
=

WSS(k)

TSS
8k 2 K. (17)

The graph on the bottom right shows the proportional reduction of error (PRE) coe�-

cient, which is defined:

PREk =
WSS(k � 1)�WSS(k)

WSS(k � 1)
8k � 2. (18)

The WSS plot shows a drop in WSS up to around five groups, with little additional

WSS reduction thereafter. The log(WSS) plot shows a steady additional reduction as k

increases, with a kink at k = 10. The ⌘2 plot shows little additional proportional reduction

in WSS to TSS after around k = 6. Finally, the PRE plot shows that moving from 10

to 11 groups does not explain additional variation, where the negative value indicates that

WSS(11) � WSS(10). Given this and the kink at k = 10 in the log(WSS) plot, I categorize

the firms into 10 di↵erent firm types based on size and heat rate.
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Figure 13: Performance of K-means clustering by number of groups

To apply the model, I calculate the mean operating capacity (MW) and heat rate for each

firm type. For the dispatch model, I also need to characterize the minimum and maximum

operating levels for each of the firms. To identify theses levels, I model firm generation as a

bimodal distribution, and I use a finite mixture model to identify the two means of generation

levels, which provides estimates of minimum and maximum operating levels. I also use a more

straightforward approach, which assumes that minimum and maximum operating levels are

equal to 0.75 and 1.0 times mean capacity (MW) of the firm type, respectively. The included

simulation results use this later approach.

8.5 Identifying Investment and Investment Levels

This section reviews the process to identify investment in the data. The data provide two

measures of firm heat rates, which measure e�ciency. One measure is a monthly self-reported

heat rate, provided by the firm pursuant to federal reporting requirements. The second

measure I call “inferred heat rate,” which is a calculation of fuel inputs in one hour, divided
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by electricity produced in that hour. I assume that heat rate improvements (reduction in

heat rate) as indicated by both reported and inferred measures decreasing with persistence

provide evidence of an e�ciency investment decision. To identify cases of persistent heat

rate improvements, I first calculate yearly average heat rates, separately based on reported

and inferred heat rate data. Monthly average heat rates are also calculated for the inferred

heat rate measure. Reported heat rates are already at the monthly level, so they do not

need to be averaged; missing reported monthly values are filled in based on the last month

of available reported data.

Next, I calculate annual heat rate di↵erences by subtracting average annual heat rate

in year t from average annual heat rate in year t + 1, separately for inferred and reported

measures of heat rate. Then I identify which firms decreased their heat rates from year t

to t + 1, based on both the inferred and reported heat rate metrics, and I record the year

of investment. This approach of calculating heat rate improvements from annual averages

identifies evidence of endogenous heat rate improvements while allowing for month-to-month

fixed e↵ects that may have exogenous impacts on heat rate, for example, due to seasonal

changes in dispatch and weather variation. I find that 50 firms observed in the 2012 - 2015

data set decreased their heat rate by both measures in this annual assessment.

Finally, I identify the percent heat rate improvement among the firms flagged as investing

in order to group investments into bins of heat rate improvement. For each firm that invested,

I calculate the percent change in heat rate as a result of investment. To apply the model

parsimoniously, I collapse the investment decisions into a binary choice to invest or not,

where investment occurs around the median investment level, 1.5 percent.

8.6 Demand Process and Prices

This appendix provides additional detail and results regarding the construction of the

transition probability matrices. First, I show the results from a modified version of equation

8.6 now estimating the model over all hour of the day including hour fixed e↵ects.
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Table 6: Investment Cost Parameter

Source Mean Std.Erro
($) ($)

SNL Data 72.2e+06 49.7e+06
Simulated Method of Moments � 1.0449e+06 6.9358e+03
Simulated Method of Moments ↵ 0.9875 .0034

Standard errors for SMM estimation approach are calculated us-
ing a bootstrap approach: the standard error is calculated from
the parameter estimates using 500 random draws of data sam-
ples.

[qh = high
⇤
= ↵ + ⇠ [qh�1 = high] + ✏ (19)

The goal of this specification is to demonstrate that this parsimonious model of demand

shocks explains a significant amount of variation in hourly demand states. Indeed, as Table

7 shows, this specification explains over 70 percent of the variation in high and low demand

shock states.

Table 7: Demand State Process

High demand state

High demand state last hour 0.84***
(0.00)

R-squared 0.708
N 26279

For the simulation, the level of demand in low and high demand states is set to the 25th

and 75th percentiles of hourly residual demand over the period 2013 - 2015, shown in Figure

14 below. Figure 15 then shows average hourly prices during this period to illustrate the

correspondence between price and demand fluctuations over the day.
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Figure 14: Residual hourly demand in CA, 2013 - 2015

Figure 15: Average Hourly Electricity Prices and Residual Demand in CA, 2013 - 2015

The estimation procedure requires constructing hourly transition probabilities for the
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demand shocks. To do so, equation is estimated for each hour of the day and estimates of ⇠

and 1� ⇠ are used as the probabilities that a high demand state in one hour leads to a high

and low demand state in the next hour, respectively.

8.7 Production Levels

Figure 16: These histograms show frequencies of production levels across a sample of firms.
The histograms illustrate the non-continuous nature of production in this setting, as firms
appear to operate most frequently across a set of discrete quantities.
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8.8 Damages Avoided by Number of Disadvantaged Counties

Figure 17: This graph shows the change in NOx damages within a county in the high carbon
price scenario, compared to no carbon price scenario. The y-axis indicates the number of
Census tracts within the county identified as Disadvantaged Communities (DACs), indicating
community’s Census Tract falls in the 25th percentile of highest pollution burdens.

8.9 Outliers in CEMS data for Combined Cycle firms

There are hours in which the inferred heat rate in the CEMS data from these firms

increases dramatically, stemming from a sharp reduction in reported generation. Figure 18

below provides an example of this in the raw data.

51



Figure 18: Hourly heat rate and generation in raw CEMS data for sample combined cycle
unit

Other empirical researchers have noted this, and attributed this to combined cycle units

not reporting generation from both steam and gas turbines in some hours. To account for

this behavior, generation is adjusted by a 1.5 multiplier in hours when heat rates exceed what

would be reasonably expected (outliers). I define heat rate outliers as those above the 99th

percentile for heat rates observed in the data for combined cycle units, which corresponds to

heat rates above 15,204 Btu per kWh. For empirical context, the median heat rate observed

in the data for combined cycle plants is 7,666 Btu per kWh, which is consistent with other

engineering estimates; for example, the EIA estimate the average combined cycle heat rate

in 2015 at 7,340 Btu per kWh (EIA 2017).
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8.10 Equivalence Between the Firm Problem and the Cost Mini-

mization Problem

The estimation approach used in this paper makes use of the equivalence between a

competitive market equilibrium and the solution to a social planner’s problem, a standard

result in dynamic equilibrium models, such as in Lucas and Prescott (1971), Jovanovic

(1982), Hopenhayn (1990) and Hopenhayn (1992). While these papers discuss a social

planner’s problem, I use the term cost minimization problem to denote that the problem

may not price all externalities. For example, the paper solves cost minimization problems

with and without pricing GHGs and local air pollution. Since not all externalities are priced

in some of the problems, it is clearer to leave out the concept of a social planner.

Cullen and Reynolds (2017) prove that this equivalence demonstrated in earlier work in

dynamic equilibrium modeling holds for their model of electricity production and investment.

This proof is required as their setting includes several feature that are not all present in ear-

lier proofs of this equivalence. In order for the equivalence to be established, an additional

assumption is needed beyond earlier work, which is that firms are ‘small’ relative to aggre-

gate production quantities. This is required because, as in my model, firm-specific states

are not continuous and discontinuous supply functions would otherwise pose a problem in

solving a planner’s problem. However, under the assumption that firms are ‘small’ relative

to aggregate production, discontinuous supply functions are smoothed out and the transition

between aggregate states is continuous. With this assumption, Cullen and Reynolds (2017)

demonstrate a market equilibrium exists in their setting, and the social planner’s allocation

of investment and production is profit maximizing for individual firms. Given the correspon-

dence between the model in Cullen and Reynolds (2017) and my model, I refer to their proof

to justify the estimation approach used here.
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